Jump to content

Elektriciteit in de landbouw...


Castaneda
 Share

Recommended Posts

Hier enkele beknopte interessante resultaten behaald met het gebruik van Elektriciteit en magnetisme in de landbouw. Voor het hele artikel: http://www.rexresearch.com/articles/elcultur.htm

 

Dit is natuurlijk weer een deel van het Geheel, dus neem het mee als zijnde dat.

Lees voor de praktische handleiding en applicatie en verdere uitweidingen de rest van de website van Rex en bijv. de boeken: 'The Secret of Life - Georges Lakhovsky' of 'Electricity in Agriculture en Horticulture - Selim Lemstrom'. Vooral de The Secret of Life van Lakhovsky maakt een heleboel dingen duidelijk, ook met betrekking tot frequenties in Mens en Dier.

 

 

Antennas

Electrostatics

DC

AC

Magnetism

Electrogenics

Sound

Monochrome & Pulsed Light

References

 

Introduction

The application of electricity, magnetism, monochrome light, and sound can stimulate the growth of plants to a great extent. This little-known technology, called Electro-culture, can accelerate growth rates, increase yields, and improve crop quality. Electro-culture can protect plants from diseases, insects and frost. These methods also can reduce the requirements for fertilizer or pesticides. Farmers can grow bigger and better crops in less time, with less effort, and at a lower cost.

 

The several approaches to Electro-culture include: antennas, static electricity, direct and alternating current, magnetism, radio frequencies, monochrome and intermittent lighting, and sound. The energies are applied to the seeds, plants, soil or the water and nutrients.

 

 

--------------------------------------------------------------------------------

 

Antenna Systems

 

The French farmer Justin Christofloreau attracted attention in 1925 with his apparatus to collect atmospheric energy for his crops. Clover treated by his method grew 7 feet high. Christofloreau's apparatus consisted of a 25-ft wooden pole; at the top was a metal pointer aligned north-south, and an antenna. Copper and zinc strips were soldered together to generate electricity from solar heat. Several of the poles were set about 10 ft apart, and the wires leading from them extended about 1000 yards. Christofloreau claimed that the accumulated electricity destroyed parasites and promoted beneficial chemical processes in the soil.(2)

 

In 1924, Georges Lakhovsky devised his Oscillator Circuit, a one-turn copper coil with overlapping ends separated by a gap. Capacitance generates oscillating currents that benefit the plants. The ring is supported by an insulator such as a plastic rod. This extremely simple arrangement stimulates plant growth (Fig. 5.1). (3)

 

Other configurations also enhance plant growth. A conical coil of stiff wire wound with 9 turns (counter-clockwise in the Northern Hemisphere, clockwise in the Southern), when stuck in the ground about 1 ft north of a plant, will collect atmospheric electricity. Connect a wire from the fence to a metal rod near the plants. A tv antenna also can be used. Rebar can be sunk into the ground at each end of a row of plants, connected by a bare wire under the soil and/or in the air. A north-south orientation will take advantage of geomagnetic polarity.

 

 

--------------------------------------------------------------------------------

 

Electrostatic Systems

 

Experimental study of the effects of electricity on plant growth began in 1746, when Dr. Maimbray of Edinburg treated myrtle plants with the output of an electrostatic generator, thereby enhancing their growth and flowering. Two years later, the French abbot Jean Nolet found that plants respond with accelerated rates of germination and overall growth when cultivated under charged electrodes.

 

Beginning in 1885, the Finnish scientist Selim Laemstrom experimented with an aerial system powered by a Wimhurst generator and Leyden jars. He found that the electrical discharge from wire points stimulated the growth of crops such as potatoes, carrots, and celery for an average increase of about 40% (up to 70%) within 8 weeks. Greenhouse-grown strawberry plants produced ripe fruit in half the usual time. The yield of raspberries was increased by 95%, and the yield of carrots was increased by 125%. However, crops of cabbage, turnips, and flax grew better without electrification than with it. The Laemstrom system comprises a horizontal antenna suspended high enough to permit plowing, weeding and irrigation. The voltage applied to the antenna varies from 2 to 70 KV, depending on the height of the antenna. The current is about 11 amps. (4, 5)

 

Spechniew and Bertholon obtained similar results a few years later, and so did the Swiss priest J.J. Gasner in 1909. Also that year, Prof. G. Stone showed that a few sparks of static electricity discharged into the soil each day increased soil bacteria up to 600%.

 

In the 1920s, V.H. Blackman reported his experiments with an aerial system similar to that of Laemstrom. He applied 60 volts DC/1 milliamp through 3 steel wires each 32 ft long and suspended 6 ft apart and 7 ft high on poles. This arrangement yielded an average increase of about 50% for several plant types. (6)

 

In 1898, Grandeau and Leclerq studied the effect of atmospheric electricity on plants by covering part of a field with a wire net which shielded them from natural electrical action. The uncovered plants grew 50-60% better than the shielded plants.

 

Wet soil improves current flow. Electro-cultured plants require about 10% more water than control plants because the charged water is perspired more rapidly than under normal conditions. Positive results are always obtained except when ozone is formed by ionization. Negative aero-ions intensify cellular oxidation reduction processes, while the positives depress them.

 

 

--------------------------------------------------------------------------------

 

Direct Current (DC)

 

In the 1840s, W. Ross of New York reportedly obtained a severalfold increase in the yield of a field of potatoes when he buried a copper plate (5 ft x 14 ft) in the earth, and a zinc plate of the same dimensions 200 ft away. The two plates were connected by a wire above ground, thus forming a galvanic cell. In similar experiments by Holdenfleiss (1844) with battery-charged zinc and copper plates, yields increased up to 25%.(7)

 

From 1918 to 1921 some 500 British farmers developed a shared system to treat their grain in an electrified solution of nutrients. The grain was dried before sowing. The farmers cultivated about 2,000 acres with the seed. The results were reported in Scientific American (15 February 1919):

 

"In the first place, there is a notable increase in the yield of grain from electrified seed... the yield of the electrified seed exceeds that of the unelectrified by from 4 to 16 bushels... The average... is between 25 and 30 % of increase... The increase in weight has ranged from 1 pound to as much as 4 pounds per bushel... Besides the increase in the bulk of the yield and the increase in the weight per bushel, there is an increase in the straw... whereas the bulk of the unelectrified seeds had thrown up only 2 straws per seed, the electrified had thrown up 5.... The straw growing from the electrified seed is longer... The stoutness and the strength of the straw is increased... the crop is less likely to be laid by storms... Corn growing from seed thus treated is less susceptible to the attacks of fungus diseases and wireworm.

 

"The effect produced upon the seed is not permanent; it will retain its enhanced efficiency only for about a month after electrification, if kept in a dry place. It is therefore desirable that the seed be sown promptly after it has been electrified... The grain must be steeped in water that contains in solution some salt [sodium nitrite] that will act as a conductor... The seed is steeped in it, and a weak current of electricity is passed by means of [iron] electrodes of large surface attached to two opposite end walls of the tank. The seed is then taken out and dried.

 

... vervolg op: http://www.rexresearch.com/articles/elcultur.htm

Comprehend and copy Nature

Link to comment
Share on other sites

boeiend, alleen snap ik bijvoorbeeld niet hoe je met een batterij van een koper en een zinkplaatje (max 1,1 Volt) op 60 meter afstand in de grond nog een stroompje kan krijgen dat effect heeft...1840

 

en hoe je met een veldsterkte van 30V/m effect meet op de planten als het aardveld zelf al 100V/m is...

 

wat we hier wel eens geprobeerd hebben is met een accu 12V en een omvormer naar 230 V een stroom te laten lopen over 5 meter grond. Dat leverde wel een meetbare stroom in ons zure veen. Maar het verjagen van de veenmollen in dat stuk helaas niet....

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

×
×
  • Create New...